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Abstract. The long-range properties of the random flux model (lattice fermions hopping under
the influence of maximally randomlink disorder) are shown to be described by a supersymmetric
field theory of non-linearσ -model type, where the groupGL(n|n) is the global invariant manifold.
An extension to non-Abelian generalizations of this model identifies connections to lattice QCD,
Dirac fermions in a random gauge potential, and stochastic non-Hermitian operators.

Quantum disordered systems are typically realized in Hamiltonians of the general form
Ĥ = Ĥ0 + V̂ , whereĤ0 models the underlying ‘clean’ system, and disorder is introduced
via the randomly distributedHermitianoperatorV̂ . Sometimes, however, it is preferable to
implement disorder in terms ofunitary stochastic operators and to consider Hamiltonians of
the type

Ĥ = −
∑
〈ij〉

c
†
i Uij cj (1)

where〈ij〉 denote neighbouring sites of ad-dimensional hypercubic lattice, thec represent
N -component lattice fermions, andUij representN -dimensional unitary matrices residing on
the links of the lattice. Stochasticity is introduced by drawing theU from a random distribution
(albeit subject to the hermiticity requirementUij = U

†
ji). Hamiltonians of the type (1) are

commonly referred to as random flux (RF) models, a denotation we will also adopt for the
casesN 6= 1.

RF models appear in a variety of different contexts. The 2d N = 1 version describes the
dynamics of lattice fermions subject to a random magnetic field or, more accurately, a random
vector potential [1–5]. This model has been discussed in connection with the physics of the
half-filled fractional quantum Hall phase [6], the physics of the spin–split Landau level [3,7],
and gauge theory of highTc superconductivity [8]. Identifying the two fermion components
of theN = 2 RF model with a spin degree of freedom, (1) describes the propagation of lattice
electrons on a spin-disordered background, a situation that occurs, e.g., in connection with the
physics of manganese oxides [9]. Identifying the three fermion components of theN = 3
model with a colour degree of freedom, (1) represents a prototype‖ of the strong coupling
lattice QCD Hamiltonian.

‖ To obtain the strong coupling QCD Hamiltonian, equation (1) must be upgraded to accommodate lattice Dirac
fermions. While this additional structure can be implemented within the present analysis [30], for the purposes of this
letter, we will not consider it further.
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Superficially, (1) appears to fall into the general class of (bond disordered) Anderson
Hamiltonians. That conjecture indeed holds true provided one stays away from the middle
of the tight-binding band,ε = 0. Upon approachingε = 0, however, the phenomenology of
the RF models begins to differ drastically from the one of conventional disordered fermion
systems. In spite of intensive numerical and analytical investigation [1–5, 7], central aspects
of these deviations are not yet fully understood. For example, the key question of whether or
not the 2d RF model possesses a band centre extended metallic phase has not yet been settled;
apart from the fact that the average density of states (DoS) diverges upon approachingε = 0,
much of the structure of even that basic observable remains unknown.

The purpose of this letter is twofold: firstly we wish to reveal a diverse network of
interconnections that exist between the RF problem and related areas of current research
interest. Secondly, in doing so, we provide new information regarding the band centre
behaviour of the RF model.

Both aspects of that programme are based on the result that the long-range behaviour of
averagen-point Green functions,〈G±(ε1) . . . G

±(εn)〉, of the RF model can be obtained from
a supersymmetric field theory defined by the action

S[T ] = −
∫

[c1str(∂T −1∂T ) + ic2str(ε̂(T + T −1)) + c3(str(T −1∂T ))2] + Sb[T ] (2)

whereT ∈ GL(n|n) (the group of invertible supermatrices of dimension 2n), ‘str’ is the
standard supertrace, and the matrixε̂ = diag(ε1, . . . , εn). The contributionSb† represents a
boundary action that depends on the values of the fieldsT at the corner points of the lattice.

Equation (2) is derived under the assumption of maximal unitary randomness, i.e. all
Uij ∈ U(N), independently distributed according to the Haar measure. In this case, the
constantsc1 = Na2−d/8d, c2 = N(2d − 1)1/2a−d/4d, c3 = a2−dC/16d wherea represents
the lattice spacing, andC denotes a geometry-dependent numerical constantO(1). Below
we will argue that the structure of the field theory is actually disorder independent, i.e. that
RF models are generally described by (2)‡, where the strength of the disorder manifests itself
merely in the value of the coupling constants.

Towards the end of the paper we will outline how, starting from the ‘microscopic’
Hamiltonian (1), the effective description (2) is derived. However, before turning to that
more technical part of the discussion, we first address the question of what kind of information
can be gained from the field theory. Our main goal will be to demonstrate that the action (2)
represents a quantitative implementation of the network of connections displayed in figure 1.
By exploring different links, we will discuss some characteristic features of the field theory.

Chiral random matrix theory (ChRMT).As usual with field theories of disordered systems,
the low-energy regime of (2) (energiesε < c1/(c2L

2)) is governed by spatially constant field
configurationsT0 = const.,

S0[T0] = −πρ0

2
str(ε̂(T0 + T −1

0 )) + Sb[T0] (3)

whereρ0 is the bulk mean DoS of the system. Correlation functions computed with respect
to the first contribution to the action (3) coincide with those otherwise obtained for the chiral

† DefiningNi , i = 1, . . . , d as the number of sites in theêi -direction,

Sb[T ] = N

2d
∑
si=0,1

(−)
∑
i (Ni+1)si str ln(T (s1L1, . . . , sdLd)).

‡ Models where theUij are subject to further constraints may behave qualitatively differently and are not encompassed
by the present analysis (e.g. the time-reversal invariant counterpart of the RF model,Uij ∈ O(N)).



Letter to the Editor L355

Figure 1. Connection between the RF model and various related systems governed by the presence
of chiral symmetries. The low-energy limit of all models is universally described by ChRMT.

unitary random matrix ensemble (ChGUE) [10–13], (the ensemble of symmetryAIII in the
classification scheme of [14]), i.e. the ensemble of block off-diagonal matrices(

A

A†

)
(4)

whereA is complex random. In particular, the mean DoS is found to vanish asε → 0 on a
scale set by the mean level spacing. The connection to ChRMT follows readily from the fact
that the RF Hamiltonian possesses a chiral symmetry: partitioned into two nested sublattices
A andB, the bipartite lattice Hamiltonian assumes a block off-diagonal form (4) in anA/B-
decomposition. To the best of our knowledge, the ramifications of the chiral structure on the
physical properties of RF models was first reported in [5]. The ‘microscopic’ justification
of the applicability of ChRMT to the universal low-energy limit of the RF model is a new
result. (In fact, and in contrast to conventional disordered systems, that limit does not behave
absolutelyuniversally: the fine structure of the DoS close toε = 0 depends on the ‘parity’ of
the lattice, i.e. on whether the number of sites is even or odd†. Without going into details, we
remark that the information about this effect is encoded in the boundary termSb.)

Non-Hermitian operators. To investigate problems involving non-Hermitian stochastic
operatorsA 6= A† one commonly introduces an operator like the one shown in (4), i.e. an
Hermitian auxiliary operator of twice the dimension of the original problem [15–17]. Put
differently, non-Hermitian Hamiltonians possess an inbuilt chiral structure implying that their
low-energy universal properties coincide with those of manifestly chiral problems like the RF
model. That in turn means that the basic structure of the low-energy field theory (2) of the
RF model (a system with broken time-reversal invariance) should coincide with that of the
(time-reversal non-invariant version of the) non-linearσ -model of non-Hermitian problems
introduced in [16]. To make that connection explicit, we introduce the auxiliary matrix variable
Q = exp(Wσ1/2)(ŝ ⊗ σ3) exp(−Wσ1/2), whereW = ln T , σi are Pauli matrices operating
in the block space of (4), and̂s = diag(sgn Imε1, . . . , sgn Imεn). One may check by direct
comparison that forn = 1 (the case there considered), the matricesQ are equivalent to the
degrees of freedom employed in [16]. When represented in terms ofQ, (2) assumes a form
similar to a standard [18] non-linearσ -model, albeit one of novel symmetry [16]. Indeed, this
connection is not incidental, but rather extends to the more complex variantsn > 1, and other
symmetry classes [19]. (For a more thorough discussion of these symmetry aspects, we refer
the reader to the original [14].)

† For an odd number of sites, the block matricesA in (4) assume arectangularform, the Hamiltonian matrix becomes
singular and states at zero energy appear.
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Weakly disordered sublattice models.Leaving the random matrix regime and turning to the
more complicated spatially extended problem, it is important to notice that the field theory (2)
has a closely related precursor. Analysis of a weakly disordered sublattice model led Gade [20]
to a boson replica version of the present model, i.e. a theory over fieldsT ∈ GL(nR)/U(nR),
whereR → 0 is the number of replicas. The action for these fields coincides with (2), save
for the absence of the boundary term, and the important difference that, due to the weakness
of the disorder, the coupling constantc1 was parametrically larger than one. However, beyond
these differences, the supersymmetric extension of the theory in the present context does not
change the validity of the perturbative RG analysis performed in [20]. Accordingly, various
conclusions concerning the physical behaviour of the RF Hamiltonian, most notably about its
localization behaviour, can be immediately inferred.

In particular, in [20] it was shown that, at the band centre, the conductance of the weakly
disordered 2d model (which is essentially determined by the coupling constantc1) did not
change under one-loop perturbative renormalization. This observation suggests that a non-
localized state might exist in the middle of the band. Since the stability of the perturbative RG
relies merely on the smallness of the parameters 1/c1, c3/c1 � 1, one can infer that, at least
for N � 1, the non-Abelian RF model exhibits metallic behaviour at the band centre†. For
N = 1( c1 = O(1)), the perturbative RG is no longer stabilized by a small parameter and
it is impossible to rule out the possibility that strong field fluctuations qualitatively change the
band centre behaviour.

It was also predicted in [20] that the 2d DoS diverges upon approaching the middle of the
band. In order to understand on which energy scale that divergence sets in, and how it will
eventually be cut off deep within the random matrix regime, one would have to superimpose
perturbative RG techniques onto a non-perturbative treatment of the low-energy regime, a task
that is beyond the scope of the present paper.

Finally we notice that, in an RG sense, finite energiesε̂ represent a relevant perturbation.
Renormalization of the field theory drives the model away from the chiral band centre limit
eventually leading to the standard unitary universality class. This result is consistent with
the analysis of [4] where it was shown that continuum fermions (i.e. the analogue of lattice
fermions close to thebottomof the band) subject to a weak random field map onto a unitary
σ -model.

The tendency of sublattice models to exhibit band centre delocalized behaviour persists
even in the (quasi) 1d case: It was shown in [5, 21] that 1d sublattice models withN even
exhibit conventional localization behaviour whilst forN odd a delocalized mode remains in
the band centre. This parity effect is closely related to the odd/even phenomenon mentioned
above in connection with the mean DoS, and indeed it is the boundary action that is responsible
for the quasi 1d delocalization phenomenon within theσ -model formulation [22].

Lattice QCD and random Dirac fermions.Besides Gade’s model, the field theory (2) has at
least two other close relatives: In QCD, (2) has been suggested on phenomenological grounds
as relevant for the determination of the low-energy spectrum of the Dirac operator [23]. In that
context, the base manifold is(4 + 1)-dimensional whilst the fieldsT ∈ U(nf + 1|1), where
nf is the number of quark flavours. For a comprehensive discussion of the QCD-analogue
of (2), its connection with ChRMT and its relevance for lattice QCD analyses, we refer the
reader to [24]. The similarity between the theories is again a manifestation of the universality
of chiralσ -models or, more physically, the universal consequences chiral symmetries have for

† It is interesting to note that, according to the connections summarized above, the unusual localization properties of
the zero energy states of the RF model characterize those ofall eigenstates of a stochastic non-Hermitian operator.



Letter to the Editor L357

the long-range properties of random systems. (In QCD, ‘randomness’ is represented by gauge
field fluctuations in the Yang–Mills Hamiltonian.)

Finally, the group structure of the field manifold admits the existence of a Wess–Zumino–
Novikov–Witten (WZNW) term,

−c4

∫ 1

0
duεζµνstr(T̃ ∂ζ T̃

−1T̃ ∂µT̃
−1T̃ ∂νT̃

−1)

whereT̃ (u = 0) = 1I andT̃ (u = 1) = T . Within the framework of non-Abelian bosonization,
such terms have been found to appear in the long-range modelling of systems with a Dirac-type
dispersion in the clean excitation spectrum [25]. However, the actual realization of a WZNW
operator in a model with an underlying clean Dirac structure crucially depends on its behaviour
under discrete symmetry operations such as coordinate exchange or reflection. For this reason,
contrary to previous speculations [26], such a term can be ruled out of consideration in the
sublattice model of dirty d-wave superconductivity [27], as well as theπ -flux model. These
systems are invariant under under an exchange of the coordinates and, therefore, do not admit
for the presence of a WZNW operator.

Summarizing we have shown that the RF model, (i) has ChRMT as a universal low-energy
limit, (ii) is predicted to possess a band centre delocalized phase [20] under conditions where
a perturbative RG scheme is applicable, (iii) forε 6= 0 renormalizes towards a conventional
unitary fixed point model [4], and (iv) bears quantitative similarity to other chirally symmetric
model systems.

Having reviewed these features, we finally outline how the field theory (2) of the RF
model is obtained from (1). That, in this letter, the derivation is not formulated in more detail
is motivated by the observation that not only the degrees of freedom but also the structure
of the field theory is, to a large extent, dictated by aspects of symmetry: By analogy to the
situation for the ‘conventional’ supersymmetricσ -models [18], there are only a fewGL(n|n)
invariant operators with6 2 gradients (namely the ones appearing in (2) plus the WZNW
operator†). Thus, the ‘only’ job that is left for a microscopic derivation is to decide whether
the operators permitted by symmetry are actually realized in the field theory, and to fix their
coupling constants. Here we restrict ourselves to a brief outline of that analysis. Details of the
calculation will be presented in a separate publication.

(i) As usual in the construction of field theories of disordered problems, we first represent
Green functions of the problem in terms of a Gaussian integral over a fieldψ . Choosing
supersymmetry as a way to normalize the resulting functional integrals to unity, the first step
exactly parallels the constructions reviewed in [18]. (ii) Next we average over the set{Uij }. At
that stage significant deviations from the standard treatment ofHermitiandisordered operators
occur. A method of exactly averaging over (extended) models involvingunitary stochasticity
has been introduced in [28,29] and christened the ‘colour–flavour transformation’. Following
that reference we eliminate the disorder at the expense of introducing a pair of auxiliary fields
{(Zij , Z̃ij )} (which play a role analogous to the Hubbard–Stratonovich fieldQ commonly
employed inσ -model constructions). (iii) Integrating out theψ we are left with the action

S[Z, Z̃] = −N
∑

〈i∈A,j∈B〉
str ln(1− Zij Z̃ij ) +N

∑
i∈A

str ln

(
ε̂ +

∑
j∈Ni

Zij

)
+N

∑
j∈B

str ln

(
ε̂ +

∑
i∈Nj

Z̃ij

)
(5)

† To complete the list of symmetry-permitted operators one has to add,O
(1)
i ≡ str(T ∂iT −1) and O(2)

ij ≡
∂istr(T ∂j T −1). Operators of this structure areimplicitly contained in (2) via the boundary term; applying Stokes
theorem toSb leads to expressions involvingO(1) andO(2).
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where the notationj ∈ Ni indicates thatj is summed over all nearest neighbours ofi.
(iv) Subjecting (5) to a saddle-point analysis, the fields are conveniently parametrized as
(Z, Z̃) ≡ (ixPT , ixT −1P), wherex is a constant, andT , P ∈ GL(n|n) respectively have
the significance of Goldstone, massive modes of the theory. (v) Integrating outP we find
that, in contrast to standardσ -model analyses (and in accord with the construction of Gade’s
action [20]), a residual coupling between massive and Goldstone modes exists; it gives rise
to thec3-term in (2). (vi) The remaining, pure Goldstone action is subjected to a gradient
expansion which results in (2).

Summarizing, we have derived an effective field theory for the maximally disordered
RF model. The theory has a status analogous to the supersymmetric non-linearσ -models of
‘conventional’ disordered Fermi systems, but its behaviour is substantially different, a fact that
is readily traced back to the presence of a chiral symmetry. It was shown that the formalism
provides a platform from which interconnections to a variety of other recently investigated
chiral problems can be conveniently analysed.

It is a pleasure to acknowledge valuable discussions with M Janssen, A Tsvelik and
J J M Verbaarschot. We thank M R Zirnbauer for plenty of useful suggestions made at all
stages of this work, and in particular for pointing out the significance of the operatorO(1).
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